Nonlinear Dynamics of Hysteretic Mechanical Systems: Some Recent Advancements

Part 1 The Vaiana-Rosati Model of Hysteresis

Nicolò Vaiana

Assistant Professor in Structural Mechanics

University of Naples Federico II

Introduction

dr. Nicolò Vaiana

University of Naples Federico II Department of Structures for Engineering and Architecture

nicolo.vaiana@unina.it

Introduction

dr. Nicolò Vaiana

University of Naples Federico II Department of Structures for Engineering and Architecture

nicolo.vaiana@unina.it

Research Group of Prof. Luciano Rosati

Introduction

dr. Nicolò Vaiana

University of Naples Federico II Department of Structures for Engineering and Architecture

nicolo.vaiana@unina.it

Main Research Topics

Mechanics of materials and structures engineering materials (elastomers and metals) engineering devices and structures

Computational mechanics numerical methods (iterative procedures, integration methods)

Dynamics and control

dynamics of solids and structures (hysteretic and viscous models) nonlinear dynamics (dynamic systems, numerical methods in dynamics)

Control

isolation of structures; dissipative control systems

Agenda

Part A

Classification

Complex hysteresis loops

Classification of complex hysteresis loops

Modeling of complex hysteresis loops Review of a generalized class of models Vaiana-Rosati model

Validation of the Vaiana-Rosati model Validation against experimental results Validation against numerical results

Reformulation of the Vaiana-Rosati model Analytical reformulation (VRM+A) Differential reformulation (VRM+D) VRM+A versus VRM+D

Agenda

Part B

Phenomenological Modeling

Complex hysteresis loops

Classification of complex hysteresis loops

Modeling of complex hysteresis loops Review of a generalized class of models Vaiana-Rosati model

Validation of the Vaiana-Rosati model

Validation against experimental results Validation against numerical results

Reformulation of the Vaiana-Rosati model Analytical reformulation (VRM+A) Differential reformulation (VRM+D) VRM+A versus VRM+D

Complex hysteresis loops

- (a) **flexible connector** for electrical substations (Filiatrault and Kremmidas 2000)
- (b) **steel beam-column connection** (Kim et al. 2012)
- (c) unbonded fiber-reinforced elastomeric bearing (Manzoori and Toopchi-Nezhad 2017)
- (d) rocking timber wall with friction dampers (Hashemi et al. 2020)

Classification of complex hysteresis loops

Hysteresis loops limited by:

- S1) two straight lines
- S2) two curves with no inflection point
- S3) two curves with one inflection point
- S4) two curves with two inflection points

smooth steel reinforcing bars

steel dampers (shear link device)

steel beam-column connections

Classification of complex hysteresis loops

Hysteresis loops limited by:

- S1) two straight lines
- S2) two curves with no inflection point
- S3) two curves with one inflection point
- S4) two curves with two inflection points

wire rope isolators

expansion anchors

steel dampers

Classification of complex hysteresis loops

Hysteresis loops limited by:

- S1) two straight lines
- S2) two curves with no inflection point
- S3) two curves with one inflection point
- S4) two curves with two inflection points

brick masonry walls

toe-screwed wood connections

wood shear walls

Classification of complex hysteresis loops

Hysteresis loops limited by:

- S1) two straight lines
- S2) two curves with no inflection point
- S3) two curves with one inflection point
- S4) two curves with two inflection points

braces

buckling steel negative stiffness devices

SMA helical springs

Classification of complex hysteresis loops

Hysteresis loops limited by:

- S1) two straight lines
- S2) two curves with no inflection point
- S3) two curves with one inflection point
- S4) two curves with two inflection points

fiber reinforced rubber bearings

reinforced concrete walls

steel-timber hybrid shear walls

Modeling of complex hysteresis loops

Review of a generalized class of models

Mechanical Systems and Signal Processing Volume 146, 1 January 2021, 106984

A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena

Nicolò Vaiana 🎗 🖾, Salvatore Sessa, Luciano Rosati

Show more 🗸

+ Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/j.ymssp.2020.106984

Get rights and content

Modeling of complex hysteresis loops

- *f* output variable
- *u* input variable

Modeling of complex hysteresis loops

$$f(u, u_{j}^{+}) = \begin{cases} c^{+}(u, u_{j}^{+}) & u < u_{j}^{+} \\ c_{u}(u) & u > u_{j}^{+} \end{cases}$$
$$f(u, u_{j}^{-}) = \begin{cases} c^{-}(u, u_{j}^{-}) & u > u_{j}^{-} \\ c_{l}(u) & u < u_{j}^{-} \end{cases}$$

Modeling of complex hysteresis loops

- c^+ generic loading curve
- *c*_u upper limiting curve
- c^- generic unloading curve
- *c*_{*l*} lower limiting curve

Modeling of complex hysteresis loops

- u_j^+ internal variable (loading phase)
- u_i^- internal variable (unloading phase)

Modeling of complex hysteresis loops

- f_0^+ model parameter
- u_0^+ model parameter
- f_0^- model parameter
- u_0^- model parameter

Modeling of complex hysteresis loops

Vaiana-Rosati model

Mechanical Systems and Signal Processing Volume 182, 1 January 2023, 109539

Classification and unified phenomenological modeling of complex uniaxial rate-independent hysteretic responses

Nicolò Vaiana 😤 🖾, Luciano Rosati

Show more 🗸

+ Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/j.ymssp.2022.109539

Get rights and content

Modeling of complex hysteresis loops

Vaiana-Rosati model

$$f(u, u_{j}^{+}) = \begin{cases} c^{+}(u, u_{j}^{+}) & u < u_{j}^{+} \\ c_{u}(u) & u > u_{j}^{+} \end{cases}$$
$$f(u, u_{j}^{-}) = \begin{cases} c^{-}(u, u_{j}^{-}) & u > u_{j}^{-} \\ c_{l}(u) & u < u_{j}^{-} \end{cases}$$

Modeling of complex hysteresis loops

Vaiana-Rosati model

$$c^{+}(u, u_{j}^{+}) = f_{e}^{+}(u) + k_{b}^{+}u + f_{0}^{+}$$
$$-\frac{1}{\alpha^{+}} \left[e^{-\alpha^{+}(+u-u_{j}^{+}+\overline{u}^{+})} - e^{-\alpha^{+}\overline{u}^{+}} \right]$$
$$c^{-}(u, u_{j}^{-}) = f_{e}^{-}(u) + k_{b}^{-}u - f_{0}^{-}$$

$$+\frac{1}{\alpha^{-}}\left[e^{-\alpha^{-}(-u+u_{j}^{-}+\overline{u}^{-})}-e^{-\alpha^{-}\overline{u}^{-}}\right]$$

Modeling of complex hysteresis loops

Vaiana-Rosati model

$$c_u(u) = f_e^+(u) + k_b^+ u + f_0^+$$

 $c_l(u) = f_e^{-}(u) + k_b^{-}u - f_0^{-}$

Modeling of complex hysteresis loops

Vaiana-Rosati model

$$f_e^{+}(u) = \beta_1^{+} e^{\beta_2^{+}u} - \beta_1^{+} + \frac{4\gamma_1^{+}}{1 + e^{-\gamma_2^{+}(u - \gamma_3^{+})}} - 2\gamma_1^{+}$$

$$f_e^{-}(u) = \beta_1^{-}e^{\beta_2^{-}u} - \beta_1^{-} + \frac{4\gamma_1^{-}}{1 + e^{-\gamma_2^{-}(u - \gamma_3^{-})}} - 2\gamma_1^{-}$$

Modeling of complex hysteresis loops

Vaiana-Rosati model

$$u_{j}^{+} = u_{P} + \bar{u}^{+} + \frac{1}{\alpha^{+}} \ln \left\{ +\alpha^{+} \left[f_{e}^{+}(u_{P}) + k_{b}^{+} u_{P} + f_{0}^{+} + \frac{1}{\alpha^{+}} e^{-\alpha^{+} \bar{u}^{+}} - f_{P} \right] \right\}$$

$$u_{j}^{-} = u_{P} - \bar{u}^{-} - \frac{1}{\alpha^{-}} \ln\{-\alpha^{-}[f_{e}^{-}(u_{P}) + k_{b}^{-}u_{P} - f_{0}^{-} - \frac{1}{\alpha^{-}}e^{-\alpha^{-}\bar{u}^{-}} - f_{P}]\}$$

Modeling of complex hysteresis loops

Vaiana-Rosati model

model parameters

loading phase

 k_b^+ f_0^+ α^+

 $\beta_1^{+} \beta_2^{+} \gamma_1^{+} \gamma_2^{+} \gamma_3^{+}$

unloading phase

 $k_b^{-} f_0^{-} \alpha^{-}$

 β_1^{-} β_2^{-} γ^{-} γ_2^{-} γ_3^{-}

shape type	limiting curves	subtype	obtained for		
<i>S</i> 1	straight lines	_	$\beta_1 + \beta_2 + \beta_2 = 0$ $\beta_1 - \beta_2 - \beta_2 = 0$	$\gamma_{1} \stackrel{+}{}_{-} = \gamma_{2} \stackrel{+}{}_{-} = 0$ $\gamma_{1} \stackrel{-}{}_{-} = \gamma_{2} \stackrel{-}{}_{-} = 0$	
S 2	curves with no inflection point	S 2.1	$\beta_1 \stackrel{+}{}^{>} > 0, \ \beta_2 \stackrel{+}{}^{>} > 0 \beta_1 \stackrel{-}{}^{>} > 0, \ \beta_2 \stackrel{-}{}^{>} > 0$	$\gamma_{1} \stackrel{+}{}_{-} = \gamma_{2} \stackrel{+}{}_{-} = 0$ $\gamma_{1} \stackrel{-}{}_{-} = \gamma_{2} \stackrel{-}{}_{-} = 0$	
		S 2.2	$ \beta_1 \stackrel{+}{}^{ +} > 0, \ \beta_2 \stackrel{+}{}^{ +} > 0 \beta_1 \stackrel{-}{}^{ -} < 0, \ \beta_2 \stackrel{-}{}^{ -} < 0 $	$\begin{array}{c} \gamma_1 \stackrel{+}{}_{-} = \gamma_2 \stackrel{+}{}_{-} = 0\\ \gamma_1 \stackrel{-}{}_{-} = \gamma_2 \stackrel{-}{}_{-} = 0 \end{array}$	
		S 2.3	$ \beta_1 \stackrel{+}{}^{>} > 0, \ \beta_2 \stackrel{+}{}^{>} > 0 \beta_1 \stackrel{-}{}^{-} < 0, \ \beta_2 \stackrel{-}{}^{-} < 0 $	$\begin{array}{c} \gamma_1 & + > 0, \ \gamma_2 & + < 0 \\ \gamma_1 & - > 0, \ \gamma_2 & - < 0 \end{array}$	
S 3	curves with one inflection point	S 3.1	$\beta_1 + \beta_2 + \beta_2 + 0$ $\beta_1 - \beta_2 - \beta_2 - 0$	$\begin{array}{c} \gamma_1 & + > 0, \ \gamma_2 & + > 0 \\ \gamma_1 & - > 0, \ \gamma_2 & - > 0 \end{array}$	
		S 3.2	$\beta_1 \stackrel{+}{}_{-} = \beta_2 \stackrel{+}{}_{-} = 0$ $\beta_1 \stackrel{-}{}_{-} = \beta_2 \stackrel{-}{}_{-} = 0$	$\gamma_1 \stackrel{+}{_{-}} > 0, \ \gamma_2 \stackrel{+}{_{-}} > 0$ $\gamma_1 \stackrel{-}{_{-}} > 0, \ \gamma_2 \stackrel{-}{_{-}} < 0$	
		S 3.3	$ \beta_1 \stackrel{+}{}^{ +} > 0, \ \beta_2 \stackrel{+}{}^{ +} > 0 \beta_1 \stackrel{-}{}^{ -} < 0, \ \beta_2 \stackrel{-}{}^{ -} < 0 $	$ \begin{array}{c} \gamma_1 & \stackrel{+}{} > 0, \ \gamma_2 & \stackrel{+}{} < 0 \\ \gamma_1 & \stackrel{-}{} > 0, \ \gamma_2 & \stackrel{-}{} < 0 \end{array} $	
<i>S</i> 4	curves with two inflection points	_	$\beta_{1} \stackrel{+}{ \ } > 0, \ \beta_{2} \stackrel{+}{ \ } > 0 \beta_{1} \stackrel{-}{ \ } < 0, \ \beta_{2} \stackrel{-}{ \ } < 0$	$\gamma_1 \stackrel{+}{\longrightarrow} 0, \ \gamma_2 \stackrel{+}{\longrightarrow} 0 \\ \gamma_1 \stackrel{-}{\longrightarrow} 0, \ \gamma_2 \stackrel{-}{\longrightarrow} 0$	

Modeling of complex hysteresis loops

Vaiana-Rosati model

model parameters

conditions to be satisfied

$$\alpha^+ > 0$$
 $\alpha^- > 0$ $f_0^+ > f_0^-$

 $k_b^{+} \beta_1^{+} \beta_2^{+} \gamma^{+} \gamma_2^{+} \gamma_3^{+}$ $k_b^{-} \beta_1^{-} \beta_2^{-} \gamma^{-} \gamma_2^{-} \gamma_3^{-}$ can be arbitrary real numbers

shape type	limiting curves	subtype	obtained for		
<i>S</i> 1	straight lines	_	$\beta_1 \stackrel{+}{}_{-} = \beta_2 \stackrel{+}{}_{-} = 0$ $\beta_1 \stackrel{-}{}_{-} = \beta_2 \stackrel{-}{}_{-} = 0$	$\gamma_1 \stackrel{+}{_{-}} = \gamma_2 \stackrel{+}{_{-}} = 0$ $\gamma_1 \stackrel{-}{_{-}} = \gamma_2 \stackrel{-}{_{-}} = 0$	
S 2	curves with no inflection point	S 2.1	$ \beta_1 \stackrel{+}{_{-}} > 0, \ \beta_2 \stackrel{+}{_{-}} > 0 \beta_1 \stackrel{-}{_{-}} > 0, \ \beta_2 \stackrel{-}{_{-}} > 0 $	$\gamma_1 \stackrel{+}{_{-}} = \gamma_2 \stackrel{+}{_{-}} = 0$ $\gamma_1 \stackrel{-}{_{-}} = \gamma_2 \stackrel{-}{_{-}} = 0$	
		S 2.2	$ \beta_1 \stackrel{+}{}^{ +} > 0, \ \beta_2 \stackrel{+}{}^{ +} > 0 \beta_1 \stackrel{-}{}^{ -} < 0, \ \beta_2 \stackrel{-}{}^{ -} < 0 $	$\gamma_1 + \gamma_2 + \gamma_2 + 0$ $\gamma_1 - \gamma_2 - \gamma_2 = 0$	
		S 2.3	$ \begin{array}{c} \beta_1 & \stackrel{+}{} > 0, \ \beta_2 & \stackrel{+}{} > 0 \\ \beta_1 & \stackrel{-}{} < 0, \ \beta_2 & \stackrel{-}{} < 0 \end{array} $	$\begin{array}{c} \gamma_1 \stackrel{+}{} > 0, \ \gamma_2 \stackrel{+}{} < 0 \\ \gamma_1 \stackrel{-}{} > 0, \ \gamma_2 \stackrel{-}{} < 0 \end{array}$	
<i>S</i> 3	curves with one inflection point	S 3.1	$\beta_1 \stackrel{+}{}_{-} = \beta_2 \stackrel{+}{}_{-} = 0$ $\beta_1 \stackrel{-}{}_{-} = \beta_2 \stackrel{-}{}_{-} = 0$	$\begin{array}{c} \gamma_1 \stackrel{+}{}_{-} > 0, \ \gamma_2 \stackrel{+}{}_{-} > 0 \\ \gamma_1 \stackrel{-}{}_{-} > 0, \ \gamma_2 \stackrel{-}{}_{-} > 0 \end{array}$	
		S 3.2	$\beta_1 \stackrel{+}{_{-}} = \beta_2 \stackrel{+}{_{-}} = 0$ $\beta_1 \stackrel{-}{_{-}} = \beta_2 \stackrel{-}{_{-}} = 0$	$\gamma_1 \stackrel{+}{_{-}} > 0, \ \gamma_2 \stackrel{+}{_{-}} > 0$ $\gamma_1 \stackrel{-}{_{-}} > 0, \ \gamma_2 \stackrel{-}{_{-}} < 0$	
		S 3.3	$ \beta_1 \stackrel{+}{}_{-} > 0, \ \beta_2 \stackrel{+}{}_{-} > 0 \beta_1 \stackrel{-}{}_{-} < 0, \ \beta_2 \stackrel{-}{}_{-} < 0 $	$\gamma_1 \stackrel{+}{}> 0, \ \gamma_2 \stackrel{+}{}< 0$ $\gamma_1 \stackrel{-}{}> 0, \ \gamma_2 \stackrel{-}{}< 0$	
S 4	curves with two inflection points	_	$ \begin{array}{c} \beta_1 & \stackrel{+}{} > 0, \ \beta_2 & \stackrel{+}{} > 0 \\ \beta_1 & \stackrel{-}{} < 0, \ \beta_2 & \stackrel{-}{} < 0 \end{array} $	$\gamma_1 \stackrel{+}{_{-}} > 0, \ \gamma_2 \stackrel{+}{_{-}} > 0$ $\gamma_1 \stackrel{-}{_{-}} > 0, \ \gamma_2 \stackrel{-}{_{-}} > 0$	

Modeling of complex hysteresis loops

Vaiana-Rosati model

model parameters

loading phase

 $k_{b}^{+} f_{0}^{+} \alpha^{+}$ $\beta_{1}^{+} \beta_{2}^{+} \gamma_{1}^{+} \gamma_{2}^{+} \gamma_{3}^{+}$

unloading phase

 $k_b f_0 \alpha^-$

 $\beta_1^- \beta_2^- \gamma^- \gamma_2^- \gamma_3^-$

Modeling of complex hysteresis loops

Vaiana-Rosati model

model parameters

loading phase

 $k_{b}^{+} f_{0}^{+} \alpha^{+}$ $\beta_{1}^{+} \beta_{2}^{+} \gamma_{1}^{+} \gamma_{2}^{+} \gamma_{3}^{+}$

unloading phase

 $k_b^{-} f_0^{-} \alpha^{-}$

 β_1^{-} β_2^{-} γ^{-} γ_2^{-} γ_3^{-}

Modeling of complex hysteresis loops

Vaiana-Rosati model

model parameters

loading phase

 $k_{b}^{+} f_{0}^{+} \alpha^{+}$ $\beta_{1}^{+} \beta_{2}^{+} \gamma_{1}^{+} \gamma_{2}^{+} \gamma_{3}^{+}$

unloading phase

 $k_b f_0 \alpha^-$

 $\beta_1^- \beta_2^- \gamma^- \gamma_2^- \gamma_3^-$

Modeling of complex hysteresis loops

Vaiana-Rosati model

model parameters

loading phase

 $k_{b}^{+} f_{0}^{+} \alpha^{+}$ $\beta_{1}^{+} \beta_{2}^{+} \gamma_{1}^{+} \gamma_{2}^{+} \gamma_{3}^{+}$

unloading phase

 $k_b f_0 \alpha^-$

 $\beta_1^- \beta_2^- \gamma^- \gamma_2^- \gamma_3^-$

Modeling of complex hysteresis loops

Vaiana-Rosati model

model parameters

loading phase

 $k_{b}^{+} f_{0}^{+} \alpha^{+}$ $\beta_{1}^{+} \beta_{2}^{+} \gamma_{1}^{+} \gamma_{2}^{+} \gamma_{3}^{+}$

unloading phase

 $k_b^{-} f_0^{-} \alpha^{-}$

 β_1^{-} β_2^{-} γ^{-} γ_2^{-} γ_3^{-}

Modeling of complex hysteresis loops

+

Vaiana-Rosati model

parameter sensitivity analysis loading phase $\boldsymbol{k_b}^+ f_0^+ \alpha^+$

$$\beta_1^+$$
 β_2^+ γ_1^+ γ_2^+ γ_3^-

unloading phase

$$k_b f_0 \alpha$$

$$\beta_1 \ \beta_2 \ \gamma^- \ \gamma_2 \ \gamma_3$$

Modeling of complex hysteresis loops

+

Vaiana-Rosati model

parameter sensitivity analysis loading phase k_b^+ f_0^+ α^+ β_1^+ β_2^+ γ_1^+ γ_2^+ γ_3^+ unloading phase $k_b^ f_0^ \alpha^ \beta_1^ \beta_2^ \gamma^ \gamma_2^ \gamma_3^-$

Modeling of complex hysteresis loops

+

Vaiana-Rosati model

parameter sensitivity analysis loading phase k_b^+ f_0^+ α^+ β_1^+ β_2^+ γ_1^+ γ_2^+ γ_3^+ unloading phase $k_b^ f_0^ \alpha^ \beta_1^ \beta_2^ \gamma^ \gamma_2^ \gamma_3^-$

Modeling of complex hysteresis loops

+

Vaiana-Rosati model

parameter sensitivity analysis

loading phase

 $k_{b}^{+} f_{0}^{+} \alpha^{+}$

$$\boldsymbol{\beta_1}^+ \ \boldsymbol{\beta_2}^+ \ \boldsymbol{\gamma_1}^+ \ \boldsymbol{\gamma_2}^+ \ \boldsymbol{\gamma_3}^+$$

unloading phase

$$k_b f_0 \alpha$$

$$\beta_1 \ \beta_2 \ \gamma^- \ \gamma_2 \ \gamma_3$$

0

0

Modeling of complex hysteresis loops

+

Vaiana-Rosati model

parameter sensitivity analysis

loading phase

 $k_{b}^{+} f_{0}^{+} \alpha^{+}$

$$\boldsymbol{\beta_1}^+ \ \boldsymbol{\beta_2}^+ \ \boldsymbol{\gamma_1}^+ \ \boldsymbol{\gamma_2}^+ \ \boldsymbol{\gamma_3}^+$$

unloading phase

$$k_b f_0 \alpha$$

$$\beta_1 \ \beta_2 \ \gamma^- \ \gamma_2 \ \gamma_3$$

0

0
Modeling of complex hysteresis loops

+

Vaiana-Rosati model

parameter sensitivity analysis loading phase

$$k_b^+$$
 f_0^+ α^+

$$\beta_1^+$$
 β_2^+ γ_1^+ γ_2^+ γ_3^+

unloading phase

$$k_b f_0 \alpha$$

$$\beta_1 \ \beta_2 \ \gamma^- \ \gamma_2 \ \gamma_3$$

 γ_3

0

0

Modeling of complex hysteresis loops

+

Vaiana-Rosati model

parameter sensitivity analysis

loading phase

 $k_b^{+} f_0^{+} \alpha^{+}$

$$\beta_1^+$$
 β_2^+ γ_1^+ γ_2^+ γ_3^+

unloading phase

$$k_b f_0 \alpha$$

$$\beta_1 \ \beta_2 \ \gamma \ \gamma_2 \ \gamma_3$$

Modeling of complex hysteresis loops

+

Vaiana-Rosati model

parameter sensitivity analysis

loading phase

 $k_{b}^{+} f_{0}^{+} \alpha^{+}$

$$\beta_1^+$$
 β_2^+ γ_1^+ γ_2^+ γ_3^+

unloading phase

$$k_b f_0 \alpha$$

$$\beta_1 \ \beta_2 \ \gamma^- \ \gamma_2 \ \gamma_3$$

0

0

Validation of the Vaiana-Rosati model

Validation against experimental results

steel bar (Han et al. 2019)

steel damper (Zhai et al. 2020)

negative stiffness device (Sarlis et al. 2013)

SMA assembly (Dolce and Cardone 2001)

Validation of the Vaiana-Rosati model

Validation against experimental results

steel bar (Han et al. 2019)

steel damper (Zhai et al. 2020)

negative stiffness device (Sarlis et al. 2013)

SMA assembly (Dolce and Cardone 2001)

Validation of the Vaiana-Rosati model

Validation against experimental results

steel bar (Han et al. 2019)

steel damper (Zhai et al. 2020)

negative stiffness device (Sarlis et al. 2013)

SMA assembly (Dolce and Cardone 2001)

Validation of the Vaiana-Rosati model

Validation against experimental results

steel bar (Han et al. 2019)

steel damper (Zhai et al. 2020)

negative stiffness device (Sarlis et al. 2013)

SMA assembly (Dolce and Cardone 2001)

Validation of the Vaiana-Rosati model

Validation against numerical results

SDOF hysteretic mechanical system

 $m\ddot{u} + f = p(t)$

Ni-Ti SMA helical spring (Zhuang et al. 2016)

Charalampakis and Tsiatas Model (CTM) (Charalampakis and Tsiatas 2018)

580

differential model

450

Validation of the Vaiana-Rosati model

Validation against numerical results

SDOF hysteretic mechanical system

 $m\ddot{u} + f = p(t)$

Ni-Ti SMA helical spring (Zhuang et al. 2016)

Vaiana and Rosati Model (VRM) (Vaiana and Rosati 2023)

+

170

170

exponential model

0

0

265

0.002

- 0.002

Validation of the Vaiana-Rosati model

Validation against numerical results

SDOF hysteretic mechanical system

 $m\ddot{u} + f = p(t)$

applied external random force

Validation of the Vaiana-Rosati model

Validation against numerical results

SDOF hysteretic mechanical system

 $m\ddot{u} + f = p(t)$

NLTHAs results

$$VRM \ tctp \ [\%] = \frac{VRM \ tct}{CTM \ tct} \ 100$$

Validation of the Vaiana-Rosati model

Validation against numerical results

VRM $tctp \ [\%] = \frac{VRM \ tct}{CTM \ tct}$

100

SDOF hysteretic mechanical system

 $m\ddot{u} + f = p(t)$

NLTHAs results

Reformulation of the Vaiana-Rosati model

Analytical reformulation (VRM+A)

Advantages

A generic hysteresis loop is described by only two curves

No internal variables need to be evaluated

Closed form expressions can be faster implemented

Reformulation of the Vaiana-Rosati model

Analytical reformulation (VRM+A)

$$f^{+}(u, u_{P}, f_{P}) = f_{e}^{+}(u) + k_{b}^{+}u + f_{0}^{+}$$
$$- (f_{e}^{+}(u_{P}) + k_{b}^{+}u_{P} + f_{0}^{+} - f_{P})$$
$$\times e^{-\alpha^{+}(u-u_{P})}$$

$$f_e^{+}(u) = \beta_1^{+} e^{\beta_2^{+}u} - \beta_1^{+} + \frac{4\gamma_1^{+}}{1 + e^{-\gamma_2^{+}(u - \gamma_3^{+})}} - 2\gamma_1^{+}$$

Reformulation of the Vaiana-Rosati model

Analytical reformulation (VRM+A)

$$f^{+}(u, u_{P}, f_{P}) = f_{e}^{+}(u) + k_{b}^{+}u + f_{0}^{+}$$
$$- (f_{e}^{+}(u_{P}) + k_{b}^{+}u_{P} + f_{0}^{+} - f_{P})$$
$$\times e^{-\alpha^{+}(u-u_{P})}$$

$$f_e^{+}(u) = \beta_1^{+} e^{\beta_2^{+}u} - \beta_1^{+} + \frac{4\gamma_1^{+}}{1 + e^{-\gamma_2^{+}(u - \gamma_3^{+})}} - 2\gamma_1^{+}$$

Reformulation of the Vaiana-Rosati model

Analytical reformulation (VRM+A)

$$f^{-}(u, u_{P}, f_{P}) = f_{e}^{-}(u) + k_{b}^{-}u - f_{0}^{-}$$
$$- (f_{e}^{-}(u_{P}) + k_{b}^{-}u_{P} - f_{0}^{-} - f_{P})$$
$$\times e^{+\alpha^{-}(u-u_{P})}$$

$$f_e^{-}(u) = \beta_1^{-} e^{\beta_2^{-}u} - \beta_1^{-} + \frac{4\gamma_1^{-}}{1 + e^{-\gamma_2^{-}(u - \gamma_3^{-})}} - 2\gamma_1^{-}$$

Reformulation of the Vaiana-Rosati model

Analytical reformulation (VRM+A)

$$f^{-}(u, u_{P}, f_{P}) = f_{e}^{-}(u) + k_{b}^{-}u - f_{0}^{-}$$
$$- (f_{e}^{-}(u_{P}) + k_{b}^{-}u_{P} - f_{0}^{-} - f_{P})$$
$$\times e^{+\alpha^{-}(u-u_{P})}$$

$$f_e^{-}(u) = \beta_1^{-} e^{\beta_2^{-}u} - \beta_1^{-} + \frac{4\gamma_1^{-}}{1 + e^{-\gamma_2^{-}(u - \gamma_3^{-})}} - 2\gamma_1^{-}$$

Reformulation of the Vaiana-Rosati model

Analytical reformulation (VRM+A)

$$f^{+}(u, u_{P}, f_{P}) = f_{e}^{+}(u) + k_{b}^{+}u + f_{0}^{+}$$
$$- (f_{e}^{+}(u_{P}) + k_{b}^{+}u_{P} + f_{0}^{+} - f_{P})$$
$$\times e^{-\alpha^{+}(u-u_{P})}$$

$$f^{-}(u, u_{P}, f_{P}) = f_{e}^{-}(u) + k_{b}^{-}u - f_{0}^{-}$$
$$- (f_{e}^{-}(u_{P}) + k_{b}^{-}u_{P} - f_{0}^{-} - f_{P})$$
$$\times e^{+\alpha^{-}(u-u_{P})}$$

Reformulation of the Vaiana-Rosati model

Analytical reformulation (VRM+A)

$$k_{t}^{+}(u, u_{P}, f_{P}) = k_{e}^{+}(u) + k_{b}^{+} + (f_{e}^{+}(u_{P}) + k_{b}^{+}u_{P} + f_{0}^{+} - f_{P}) \times \alpha^{+}e^{-\alpha^{+}(u-u_{P})}$$

$$k_{e}^{+}(u) = \beta_{1}^{+}\beta_{2}^{+}e^{\beta_{2}^{+}u} + \frac{4\gamma_{1}^{+}\gamma_{2}^{+}e^{-\gamma_{2}^{+}(u-\gamma_{3}^{+})}}{\left[1 + e^{-\gamma_{2}^{+}(u-\gamma_{3}^{+})}\right]^{2}}$$

Reformulation of the Vaiana-Rosati model

Analytical reformulation (VRM+A)

$$k_{t}^{+}(u, u_{P}, f_{P}) = k_{e}^{+}(u) + k_{b}^{+} + (f_{e}^{+}(u_{P}) + k_{b}^{+}u_{P} + f_{0}^{+} - f_{P}) \times \alpha^{+}e^{-\alpha^{+}(u-u_{P})}$$

$$k_{e}^{+}(u) = \beta_{1}^{+}\beta_{2}^{+}e^{\beta_{2}^{+}u} + \frac{4\gamma_{1}^{+}\gamma_{2}^{+}e^{-\gamma_{2}^{+}(u-\gamma_{3}^{+})}}{\left[1 + e^{-\gamma_{2}^{+}(u-\gamma_{3}^{+})}\right]^{2}}$$

k

Reformulation of the Vaiana-Rosati model

Analytical reformulation (VRM+A)

$$k_{t}^{-}(u, u_{P}, f_{P}) = k_{e}^{-}(u) + k_{b}^{-}$$
$$- (f_{e}^{-}(u_{P}) + k_{b}^{-}u_{P} - f_{0}^{-} - f_{P})$$
$$\times \alpha^{-}e^{+\alpha^{-}(u-u_{P})}$$

 $k_{e}^{-}(u) = \beta_{1}^{-}\beta_{2}^{-}e^{\beta_{2}^{-}u} + \frac{4\gamma_{1}^{-}\gamma_{2}^{-}e^{-\gamma_{2}^{-}(u-\gamma_{3}^{-})}}{[1+e^{-\gamma_{2}^{-}(u-\gamma_{3}^{-})}]^{2}}$

Reformulation of the Vaiana-Rosati model

Analytical reformulation (VRM+A)

$$k_{t}^{-}(u, u_{P}, f_{P}) = k_{e}^{-}(u) + k_{b}^{-}$$
$$- (f_{e}^{-}(u_{P}) + k_{b}^{-}u_{P} - f_{0}^{-} - f_{P})$$
$$\times \alpha^{-}e^{+\alpha^{-}(u-u_{P})}$$

 $k_e^{-}(u) = \beta_1^{-}\beta_2^{-}e^{\beta_2^{-}u} + \frac{4\gamma_1^{-}\gamma_2^{-}e^{-\gamma_2^{-}(u-\gamma_3^{-})}}{[1+e^{-\gamma_2^{-}(u-\gamma_3^{-})}]^2}$

Reformulation of the Vaiana-Rosati model

Analytical reformulation (VRM+A)

$$W^{+}(u_{i}, u_{f}, u_{P}, f_{P}) = W_{a}^{+}(u_{i}, u_{f})$$

+ $W_{b}^{+}(u_{i}, u_{f})$
+ $W_{c}^{+}(u_{i}, u_{f})$
+ $W_{d}^{+}(u_{i}, u_{f}, u_{P}, f_{P})$

generalized work

Reformulation of the Vaiana-Rosati model

Analytical reformulation (VRM+A)

$$W^{-}(u_{i}, u_{f}, u_{P}, f_{P}) = W_{a}^{-}(u_{i}, u_{f}) + W_{b}^{-}(u_{i}, u_{f}) + W_{c}^{-}(u_{i}, u_{f}) + W_{d}^{-}(u_{i}, u_{f}, u_{P}, f_{P})$$

generalized work

Reformulation of the Vaiana-Rosati model

Analytical reformulation (VRM+A)

implementation algorithm

1 Initial settings

1.1 Set the model parameters

 $k_b^+, f_0^+, \alpha^+, \beta_1^+, \beta_2^+, \gamma_1^+, \gamma_2^+, \gamma_3^+$ and $k_b^-, f_0^-, \alpha^-, \beta_1^-, \beta_2^-, \gamma_1^-, \gamma_2^-, \gamma_3^-$

1.2 Define initial values of generalized force, tangent stiffness, and work

 $f_{t=0}$, $(k_t)_{t=0}$, $W_{t=0}$

2 Calculations at each time step

2.1 Update the model parameters

 $\begin{aligned} k_b &= k_b^+ (k_b^-), \ f_0 &= f_0^+ (f_0^-), \ \alpha &= \alpha^+ (\alpha^-), \ \beta_1 &= \beta_1^+ (\beta_1^-), \ \beta_2 &= \beta_2^+ (\beta_2^-), \\ \gamma_1 &= \gamma_1^+ (\gamma_1^-), \ \gamma_2 &= \gamma_2^+ (\gamma_2^-), \ \gamma_3 &= \gamma_3^+ (\gamma_3^-), \text{ if } s_t > 0 \ (s_t < 0) \end{aligned}$

2.2 Evaluate the generalized force at time t

$$(f_e)_{t-\Delta t} = \beta_1 e^{\beta_2 u_{t-\Delta t}} - \beta_1 + \frac{4\gamma_1}{1 + e^{-\gamma_2 (u_{t-\Delta t} - \gamma_3)}} - 2\gamma_1$$

$$(f_e)_t = \beta_1 e^{\beta_2 u_t} - \beta_1 + \frac{4\gamma_1}{1 + e^{-\gamma_2 (u_t - \gamma_3)}} - 2\gamma_2$$

 $f_t = (f_e)_t + k_b u_t + s_t f_0 - [(f_e)_{t-\Delta t} + k_b u_{t-\Delta t} + s_t f_0 - f_{t-\Delta t}]e^{-s_t \alpha (u_t - u_{t-\Delta t})}$

2.3 Compute the generalized tangent stiffness at time t

2.4 Calculate the generalized work at time t

Reformulation of the Vaiana-Rosati model

Differential reformulation (VRM+D)

Advantages

Adoption in nonlinear dynamics (state space formulation)

Extension to multiaxial cases

Reformulation of the Vaiana-Rosati model

Differential reformulation (VRM+D)

$$\dot{f}^{+} = \left[k_{e}^{+}(u) + k_{b}^{+} + \alpha^{+}\left(f_{e}^{+}(u) + k_{b}^{+}u + f_{0}^{+} - f^{+}\right)\right]\dot{u}$$

Reformulation of the Vaiana-Rosati model

Differential reformulation (VRM+D)

 $\dot{f}^{-} = \left[k_{e}^{-}(u) + k_{b}^{-} - \alpha^{-}(f_{e}^{-}(u) + k_{b}^{-}u - f_{0}^{-} - f^{-})\right] \dot{u}$

Reformulation of the Vaiana-Rosati model

Differential reformulation (VRM+D)

$$k_t^{+} = k_e^{+}(u) + k_b^{+} + \alpha^{+} (f_e^{+}(u) + k_b^{+}u + f_0^{+} - f^{+})$$

Reformulation of the Vaiana-Rosati model

Differential reformulation (VRM+D)

 $k_t^{-} = k_e^{-}(u) + k_b^{-}$ $-\alpha^{-}(f_e^{-}(u) + k_b^{-}u - f_0^{-} - f^{-})$

Reformulation of the Vaiana-Rosati model

Differential reformulation (VRM+D)

 $\dot{W}^+ = f^+ \, \dot{u}$

generalized work

Reformulation of the Vaiana-Rosati model

Differential reformulation (VRM+D)

 $\dot{W}^- = f^- \, \dot{u}$

generalized work

Reformulation of the Vaiana-Rosati model

Differential reformulation (VRM+D)

implementation algorithm

1 Initial settings

1.1 Set the model parameters

 $k_b^+, f_0^+, \alpha^+, \beta_1^+, \beta_2^+, \gamma_1^+, \gamma_2^+, \gamma_3^+$ and $k_b^-, f_0^-, \alpha^-, \beta_1^-, \beta_2^-, \gamma_1^-, \gamma_2^-, \gamma_3^-$

1.2 Define initial values of generalized force, tangent stiffness, and work

 $f_{t=0}$, $(\boldsymbol{k}_t)_{t=0}$, $W_{t=0}$

2 Calculations at each time step

2.1 Update the model parameters

$$\begin{split} k_b &= k_b^+ \, (k_b^-), \ f_0 = f_0^+ \, (f_0^-), \ \alpha &= \alpha^+ \, (\alpha^-), \quad \beta_1 = \beta_1^+ \, (\beta_1^-), \ \beta_2 = \beta_2^+ \, (\beta_2^-), \\ \gamma_1 &= \gamma_1^+ \, (\gamma_1^-), \ \gamma_2 &= \gamma_2^+ \, (\gamma_2^-), \ \gamma_3 &= \gamma_3^+ \, (\gamma_3^-), \text{ if } s_t > 0 \ (s_t < 0) \end{split}$$

2.2 Evaluate the generalized force at time t by using a numerical method

$$(k_e)_t = \beta_1 \beta_2 e^{\beta_2 u_t} + \frac{4\gamma_1 \gamma_2 e^{-\gamma_2 (u_t - \gamma_3)}}{[1 + e^{-\gamma_2 (u_t - \gamma_3)}]^2}$$
$$(f_e)_t = \beta_1 e^{\beta_2 u_t} - \beta_1 + \frac{4\gamma_1}{1 + e^{-\gamma_2 (u_t - \gamma_3)}} - 2\gamma_1$$
$$\dot{f}_t = [(k_e)_t + k_b + s_t \alpha ((f_e)_t + k_b u_t + s_t f_0 - f_t)] \dot{u}_t$$

2.3 Compute the generalized tangent stiffness at time t

2.4 Calculate the generalized work at time t by using a numerical method

Reformulation of the Vaiana-Rosati model

VRM+A versus VRM+D

System S1

 $m\ddot{u} + f = p(t)$

Reformulation of the Vaiana-Rosati model

VRM+A versus VRM+D

System S2

 $m\ddot{u} + f = p(t)$

Reformulation of the Vaiana-Rosati model

VRM+A versus VRM+D

System S3

 $m\ddot{u} + f = p(t)$

Reformulation of the Vaiana-Rosati model

VRM+A versus VRM+D

System S4

 $m\ddot{u} + f = p(t)$

Reformulation of the Vaiana-Rosati model

VRM+A versus VRM+D

Applied external forces

 $m\ddot{u} + f = p(t)$

Reformulation of the Vaiana-Rosati model

VRM+A versus VRM+D

System S1

CEM-VRM+A

 $m\ddot{u} + f = p(t)$

RKM-VRM+D

 $\dot{x}_{1} = x_{2}$ $\dot{x}_{2} = m^{-1}(p(t) - x_{3})$ $\dot{x}_{3} = \left[k_{e}(x_{1}) + k_{b} + \operatorname{sign}(x_{2})\alpha \times (f_{e}(x_{1}) + k_{b}x_{1} + \operatorname{sign}(x_{2})f_{0} - x_{3})\right]x_{2}$

harmonic force with constant amplitude

harmonic force with increasing amplitude

Reformulation of the Vaiana-Rosati model

VRM+A versus VRM+D

System S2

CEM-VRM+A

 $m\ddot{u} + f = p(t)$

RKM-VRM+D

 $\dot{x}_{1} = x_{2}$ $\dot{x}_{2} = m^{-1}(p(t) - x_{3})$ $\dot{x}_{3} = \left[k_{e}(x_{1}) + k_{b} + \operatorname{sign}(x_{2})\alpha \times (f_{e}(x_{1}) + k_{b}x_{1} + \operatorname{sign}(x_{2})f_{0} - x_{3})\right]x_{2}$

harmonic force with constant amplitude

harmonic force with increasing amplitude

Reformulation of the Vaiana-Rosati model

VRM+A versus VRM+D

System S3

CEM-VRM+A

 $m\ddot{u} + f = p(t)$

RKM-VRM+D

 $\dot{x}_{1} = x_{2}$ $\dot{x}_{2} = m^{-1}(p(t) - x_{3})$ $\dot{x}_{3} = \left[k_{e}(x_{1}) + k_{b} + \operatorname{sign}(x_{2})\alpha \times (f_{e}(x_{1}) + k_{b}x_{1} + \operatorname{sign}(x_{2})f_{0} - x_{3})\right] x_{2}$

harmonic force with constant amplitude

harmonic force with increasing amplitude

Reformulation of the Vaiana-Rosati model

VRM+A versus VRM+D

System S4

CEM-VRM+A

 $m\ddot{u} + f = p(t)$

RKM-VRM+D

 $\dot{x}_{1} = x_{2}$ $\dot{x}_{2} = m^{-1}(p(t) - x_{3})$ $\dot{x}_{3} = \left[k_{e}(x_{1}) + k_{b} + \operatorname{sign}(x_{2})\alpha \times (f_{e}(x_{1}) + k_{b}x_{1} + \operatorname{sign}(x_{2})f_{0} - x_{3})\right]x_{2}$

harmonic force with constant amplitude

harmonic force with increasing amplitude

References

[1] Vaiana N., Rosati L. (2023) Classification and unified phenomenological modeling of complex uniaxial rate-independent hysteretic responses. *Mechanical Systems and Signal Processing* 182: 109539.

[2] Vaiana N., Capuano R., Rosati L. (2023) Evaluation of path-dependent work and internal energy change for hysteretic mechanical systems. *Mechanical Systems and Signal Processing* 186: 109862.

[3] Vaiana N., Sessa S., Rosati L. (2021) A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena. *Mechanical Systems and Signal Processing* 146: 106984.

[4] Vaiana N., Sessa S., Marmo F., Rosati L. (2018) A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials. *Nonlinear Dynamics* 93(3): 1647-1669.

Thank you for your Kind Attention

dr. Nicolò Vaiana

Department of Structures for Engineering and Architecture

University of Naples Federico II

