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vector 𝐚 passing through the first approximation (𝛈 $ , Ω $ ) and the solution curve. Let 𝐛 denote the normal vector 
to the tangent vector 𝐚. 
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if a periodic solution 𝛈 exists:𝐏 𝛈, Ω = 𝛈

𝐏 𝛈, Ω − 𝛈 = 𝟎

Both the periodic solution 𝛈 and Ω	are taken to be function of the arclength s along the solution path:

𝐏 𝛈(s), Ω(s) − 𝛈(s) = 𝟎

Pseudo-Arclength Pathfollowing of Periodic Solutions

𝐏 𝛈, Ω − 𝛈 = 𝟎

(𝛈 s( , Ω s( ) 

The solution (𝛈 s( + Δs , Ω s( + Δs ) is sought as the intersection between the line normal to the unit tangent 
vector 𝐚 passing through the first approximation (𝛈 $ , Ω $ ) and the solution curve. Let 𝐛 denote the normal vector 
to the tangent vector 𝐚. 
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So once we know the first equilibrium point (𝛈 s( , Ω s( ) and the increment Δs (which can be made adaptive) the 
equilibrium path is obtained by:  
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At the jth iteration:

𝛈(+) = 𝛈(+,$) + Δ𝛈(+) Ω(+) = Ω(+,$) + ΔΩ(+)

𝜕𝐏
𝜕𝛈

− 𝐈
𝜕𝐏
𝜕Ω

𝜕𝛈
𝜕s

𝜕Ω
𝜕s

Δ𝛈 +

ΔΩ(+)
= −

𝐏 𝛈 +,$ , Ω +,$ − 𝛈 +,$

g 𝛈 +,$ , Ω +,$

𝐉(+,$)Δ𝐱 + = −𝐫(+,$)

Δ𝐱 + = − 𝐉 +,$
,$
𝐫(+,$) error 𝐫 < tol

Pseudo-Arclength Pathfollowing of Periodic Solutions

𝐏 𝛈 + , Ω(+) − 𝛈 + = 𝐏 𝛈 +,$ , Ω +,$ − 𝛈 +,$ +
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𝜕𝛈

− 𝐈 ⋅ Δ𝛈 + +
𝜕𝐏
𝜕Ω

ΔΩ(+)  

g 𝛈 + , Ω(+) = g 𝛈 +,$ , Ω +,$ +
𝜕g
𝜕𝛈

⋅ Δ𝛈 + +
𝜕g
𝜕Ω

ΔΩ +  𝐏 𝛈, Ω − 𝛈 = 𝟎

𝐚	Δs

𝐛

(𝛈 s( + Δs , Ω s( + Δs ) 

(𝛈 s( , Ω s( ) (𝛈 $ , Ω $ ) 
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Pseudo-Arclength Pathfollowing of Periodic Solutions
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𝐏 𝛈 + δ$𝐞" ; Ω − 𝐏 𝛈 − δ$𝐞" ; Ω

2δ$

𝜕𝐏
𝜕Ω

≈
𝐏 𝛈; Ω + δ' − 𝐏 𝛈; Ω − δ'

2δ'

Pseudo-Arclength Pathfollowing of Periodic Solutions
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Pseudo-Arclength Pathfollowing of Periodic Solutions

After achieving convergence, the procedure furnishes the Jacobian matrix evaluated at the periodic solution (i.e. the 
monodromy matrix 𝚽); that is:

𝚽 =
𝜕𝐏
𝜕𝛈
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Pseudo-Arclength Pathfollowing of Periodic Solutions

After achieving convergence, the procedure furnishes the Jacobian matrix evaluated at the periodic solution (i.e. the 
monodromy matrix 𝚽); that is:

𝚽 =
𝜕𝐏
𝜕𝛈

The eigenvalues of 𝚽, i.e. the Floquet multipliers, allow us to ascertain the stability of the calculated orbit and its 
bifurcations. 
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Numerical Applications
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Since the two systems are equivalent, we apply the Pseudo-Arclength Path Following method to the nondimensional 
system. Specifically, the following parameters are fixed:

𝐩𝐚𝐫 = ζ, χ$ , χ' , χ. , χ1 , χ2 , χ3 , F, Ω

The frequency of the forcing Ω is assumed as the control parameter in the procedure. All the dynamic phenomena 
observed in the system are evaluated while varying the control parameter (see codimension-1 bifurcation).

�̇� = 𝐟 𝐱, Ω
The procedure provides, as the control parameter varies, the vectors in the state space on a limit cycle.

1
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This means that if we excite the system under consideration with a 
dimensionless forcing of the type F cos Ωτ

where F = 20 and Ω = 1.859 the system will exhibit:
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Numerical Applications

This means that if we excite the system under consideration with a 
dimensionless forcing of the type F cos Ωτ

where F = 20 and Ω = 1.859 the system will exhibit:
• 3 periodic orbits, 2 stable and 1 unstable; 
• Among the two stable periodic orbits, one has a smaller 

maximum displacement compared to the displacement used to 
calibrate the model parameters, while the other has a larger 
displacement; 

• The unstable periodic orbit has a larger displacement than the 
one used for calibrating the model parameters.

The conclusion we can draw is that the behavior of the specific 
system studied is dependent on the initial conditions for	F = 20 e 
Ω = 1.859.
In particular, there may be specific initial conditions for which the 
result obtained from a NLTH is not acceptable.
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calibrate the model parameters, while the other has a larger 
displacement; 

• The unstable periodic orbit has a larger displacement than the 
one used for calibrating the model parameters.

The conclusion we can draw is that the behavior of the specific 
system studied is dependent on the initial conditions for	F = 20 e 
Ω = 1.859.
In particular, there may be specific initial conditions for which the 
result obtained from a NLTH is not acceptable.
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